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SUMMARY

A new methodology to assess the e�ect of the �ame/acoustics coupling on the stability of the modes
without combustion is presented. An asymptotic method is used to account for the acoustic �ame transfer
function. The e�ciency and accuracy of the approach is demonstrated on an academic case similar to
a Rijke tube con�guration. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It has been known for a long time that the coupling between acoustic waves and �ames in
industrial systems can lead to high amplitude instabilities [1–3]. In addition to inducing os-
cillations of all physical quantities (pressure, velocities, temperature, etc.), these instabilities
can increase the amplitude of the �ame motion and, in extreme cases, destroy part of the
burner due to large heat transfer in the premixing tube. Since the equivalence ratio oscillates
when instabilities are present, there is a general trend for combustors to be more unstable
when operating in the lean regime (more air injected than necessary to burn the amount of
fuel injected). Besides, due to new international constraints, pollutant emissions must be re-
duced and many gas turbine manufacturers’ strategies consist in operating their systems under
leaner and leaner conditions. Consequently, there is a need to better understand combustion
instabilities and to predict them at the design level. The objective of this paper is to present
a methodology to predict unstable=stable thermo-acoustic modes of a combustor. Since no
assumptions about the geometry are required, this method can be applied to realistic con�gu-
rations [4]. The equations of linear acoustics are �rst written in the case of three-dimensional
reactive �ows, and the problem is closed by using �ame transfer functions (which can be
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evaluated with large Eddy simulation calculations on realistic con�gurations [5]). An asymp-
totic expansion method is then developed in order to recover a classical eigenvalues problem
from these equations. Finally, the methodology is tested by computing an academic example
whose theoretical solution is known.

2. METHODOLOGY

2.1. Governing equations

A suitable description of the thermo-acoustic instabilities can be derived by making use of
the perfect gas law and classical equations of �uid mechanics, i.e. equations of mass, mo-
mentum and energy conservation. Besides, assumptions of constant mean pressure and low
Mach number appear reasonable from gas turbine observations. Moreover, since eigenmodes
exhibited in practical systems lie in the low=medium frequency domain, viscosity as well
as thermodi�usivity may be neglected. Under these assumptions, a wave equation for small
pressure perturbations may be derived [6] and reads

∇ ( �c2∇p′)− @2p′

@t2
= − (�− 1)@q̇

′

@t
(1)

where primed and overbarred variables stand for the thermo-acoustic perturbation and mean
variables, respectively, whereas p, c and q̇ stand for pressure, sound speed and rate of heat
release. Note that the speci�c heat ratio � has been assumed constant for deriving this equation
but the �ow �eld �uctuations are not supposed isentropic. Equation (1) is thus relevant to any
large scale of small amplitude pressure �uctuations. Solving this equation requires a model
for the rate of heat release �uctuations q̇′ in order to close the problem. As suggested by
the seminal studies of Crocco [7, 8], the �ame is modelled as a purely acoustic element,
neglecting the e�ects of local turbulence, chemistry or heat losses. The simplest model reads

q̇′(x; t)
�̇q(x)

= nl(x)
u′(xref ; t − �(x)) · nref

�u(xref ) · nref (2)

where nl(x) is a local interaction index and �(x) stands for a time lag between the local
unsteady heat release q̇′(x; t) and the acoustic velocity u′ at a reference position xref and
direction nref . The other variables introduced are the local mean rate of heat release �̇q(x) and
the mean speed at the reference point �u(xref ). This formulation generalizes the n–� model
[7, 8] used in the framework of one-dimensional con�gurations with in�nitely thin �ames
[6] to the case of three-dimensional �ows with distributed combustion. Assuming harmonic
�uctuations of small amplitudes, p′=�(p̂(x)e−i!t), with i2 = − 1, Equations (1) and (2) can
be combined with the linearized momentum equation i! �� û=∇p̂ to give

∇ ( �c2∇p̂) +!2p̂= (�− 1) �̇q(x)
��(xref ) �u(xref ) nref

nl(x)ei�(!)�(x)∇p̂ · nref (xref ) (3)

This latter equation together with proper boundary conditions constitutes the eigenvalue prob-
lem satis�ed by the harmonic �uctuations p̂ in the �ow domain � bounded by the surface
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@�= @�D ∪�VN ∪�Z . Three types of boundary conditions have been considered:
• A Dirichlet condition p̂=0 on @�D.
• A Neumann condition û · n=0, n the outward normal unit vector on @�N .
• An admittance type condition on @�Z which implies

1
Z
=

−i �c∇p̂ · n
!p̂

(4)

where Z is the reduced impedance Z = p̂=( �� �c û · n).

2.2. Numerical approach

At �rst, the problem without source term is considered. This corresponds to the case of an
acoustically passive �ame with zero unsteady heat release q̇′. Note, however, that the mean
heat release �̇q is not necessarily zero. Consistently, the mean temperature and speed of sound
may still be functions of space. Using the classical Galerkin �nite element method to discretize
the problem and assuming 1=Z = �1=!+ �2 + �3!, �1, �2, �3, complex constants, one ends up
with the �nite dimension problem

[A][P] +![B][P] +!2[P]= 0 (5)

where the matrix [A] of size m represents the ∇( �c2∇) operator and [B] represents the boundary
terms. [P] is the column vector whose components are the values of p̂ at the m nodes of the
�nite element mesh. The resulting problem is not linear anymore (with respect to !2) but
this di�culty can be overcome by using a suitable variable transformation [9]. A classical
eigenvalue problem of size 2 × m can then be recovered and solved by an Arnoldi method
[10].

2.3. Accounting for the unsteady combustion

The eigenvalue problem associated with Equation (3) cannot be solved directly by classical
methods developed for linear algebra. In the present approach, the �ame is considered as
an element which slightly modi�es the eigenmode without combustion. Speci�cally, a global
energy form of Equation (3) is �rst derived by multiplying this equation by p̂ and integrating
over �

∫
�
p̂[∇( �c2∇p̂) +!2p̂] dV =

∫
�

(�− 1) �̇q(x)
��(xref ) �u(xref ) · nref nl(x)e

i�(!)�(x)p̂∇p̂ · nref (xref ) dV (6)

We then de�ne the expansion parameter �= 1
V�

∫
� nl(x) dV and seek for the eigenmodes (!; p̂)

of Equation (3) as a �rst-order expansion around the modes without combustion (!0; p̂0)

!=!0 + �!1 + o(�2) (7)

p̂= p̂0 + �p̂1 + o(�
2) (8)
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Introducing these relations in Equation (6) and keeping only �rst-order terms give the
following equation:∫

�
p̂0[∇( �c2∇�p̂1) +!20�p̂1] dV = − 2�

∫
�
p̂20!0!1 dV

+
∫
�

(�− 1) �̇q(x)(∇p̂0 · nref )(xref )
��(xref ) �u(xref ) · nref n1(x)ei�(!0)�(x)p̂0 dV (9)

The LHS term can be simpli�ed by using a reduction order method [11] in which p̂1 = p̂0F1,
F1 being a spatial derivable function. Owing to this relation, the LHS term of Equation (9)
becomes ∫

�
p̂0[∇ · ( �c2∇�p̂1) +!20�p̂1] dV = �

∫
@�
�c2p̂20∇F1 dS (10)

which is obviously null on @�D since p̂0 = 0. Moreover, the eigenmodes with �ame (!; p̂) and
without �ame (!0; p̂0) verify the same boundary conditions, one can show that ∇F1 dS=0
on @�N and that the following relation is valid at the �rst-order in � on @�Z

∇F1 dS= i!1
�cZ(!0)

(
1− 1

Z(!0)
@Z
@!
(!0)

)
(11)

Consequently, by introducing this relation in the RHS term of Equation (10), an expression
for the perturbation �!1 can be obtained

�!1 =

∫
�
�̇q(x)p̂0n1(x)e

i�(!0)�(x)(�− 1)(∇p̂0 · nref )(xref ) dV
��(xref ) �u(xref ) · nref

[
2!0

∫
� p̂

2
0 dV +

∫
@�Z

i �cp̂20
Z(!0)

(1− 1=Z(!0)@Z=@!(!0)) dS
] (12)

In the case where the denominator of Equation (12) is not null, this equation provides a
simple way to check whether an eigenmode without combustion (!0; p̂0) is made stable
(�(!0 + �!1)¡ 0) or unstable (�(!0 + �!1)¿ 0) by the coupling with the unsteady �ame.

3. ACADEMIC EXAMPLE OF APPLICATION

3.1. Description of the con�guration and theoretical solution

The aforementioned method is tested on the con�guration illustrated by Figure 1. It deals
with a two-dimensional tube with a closed inlet, an open outlet and a mean temperature jump
induced by a �ame located at its middle. Since the �ame thickness is much smaller than the
typical wavelength, the �ame is considered as in�nitely thin. Following the methodology of
Poinsot and Veynante [6], suitable jump relations across the �ame provide a characteristic
relation matched by the pulsation ! of the longitudinal modes,

cos
(
kL
4

)
;
[
nei!� sin2

(
kL
4

)
− 3 cos2

(
kL
4

)
+ 2

]
=0 (13)

where k=!=c1 stands for the wave number in the fresh gases. With the formalism chosen in
the second section, an eigenmode is unstable whenever �(!) is positive. Besides, the classical
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Figure 1. Con�guration retained for �rst-order expansion method validation.

one-dimensional n–� model [6] used in Equation (13) can be related to the model in Equation
(2) and

�=
�c2(xref )

(�− 1)cp( �T 2 − �T 1)
n (14)

where cp is the massic heat capacity at constant pressure. In this simple example, cp and
� are considered spatially constant and are equal to 1004:5 J K−1 kg−1 and 1.4, respectively.
In addition, following Crocco [7, 8], the heat release �uctuations are coupled to the velocity
�uctuations in the fresh gas. In this academic example, it means that the theoretical reference
position required for de�ning the �ame transfer function is chosen immediately upstream the
�ame, i.e. at the abscissa xref = 0:25m.

3.2. Application of the asymptotic expansion method

Although the con�guration described in Section 3.1 is one-dimensional, all the calculations
have been performed on unstructured two dimensional meshes with triangular cells. Two kinds
of mesh have been used: a �rst one with 561 nodes and a second one, highly re�ned in the
�ame vicinity, with 5231 nodes. Two main issues have been addressed:

• Optimal position of the reference point: Because of the large temperature variation
near xref , the computation of the acoustic pressure gradient at the reference point (see
Equation (12)) is not reliable in the vicinity of the �ame. To overcome this di�culty, the
reference location has been taken as the closest grid point to the �ame in the fresh gas,
viz. xref = 0:24m for the 561 nodes mesh instead of xref = 0:25m for the theoretical model.
The re�nement in the second mesh allows a reference position closer to the theoretical
value: xref = 0:249m. Table I shows that the results obtained with the two meshes are
in close agreement with the theory: as long as the gap between the theoretical and the
numerical reference location is small in comparison with the eigenmode wavelength,
accurate computation can be performed.

• Validity domain with respect to expansion parameter � value: Three values of the
expansion parameter are considered, �=0:003 (n=0:01), �=0:33 (n=1:0) and �=1:6
(n=5:0) the time delay in any case being �=10−4 s. Eigen frequencies obtained in
each case are compared with theoretical solutions of Equation (13). The results are
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Table I. E�ect of reference position value and the grid resolution for the �rst eigen
frequency; �=0:003, �=10−4 s. Cross ‘X’ indicates unfeasible calculation.

xref = 0:24m xref = 0:249m xref = 0:25m

Coarse mesh (561 nodes) 270:4− 0:087i X X
Re�ned mesh (5231 nodes) 271:3− 0:093i 271:4− 0:088i X
Theoretical 271:5− 0:098i 271:6− 0:088i 271:6− 0:088i
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Figure 2. Representation in the complex plane of the theoretical and computed eigen frequencies.

available in Figure 2 and displayed in the complex plane. As expected, the computed
eigen frequencies match the theoretical results for low values of �. Discrepancies appear
for � values close to one but the error on the real part of the eigen frequencies is bounded
to 15% except for the �rst mode with �=1:6. Concerning the imaginary part of the eigen
frequencies, the error is more important but the stability of the mode, i.e. the sign of
the imaginary part, is always correctly predicted. Moreover, the third mode is always
found the most unstable. From these results, �rst-order asymptotic expansion seems to
increase the shift induced by the �ame in eigen frequency values but the trend is correctly
predicted even for expansion parameter values beyond its theoretical application range
(� � 1).

4. CONCLUSION

A methodology to evaluate the stability of the thermo-acoustic eigenmodes with an active
acoustic �ame has been proposed. Because of the particular source term induced by the �ame,
a special treatment is required. An asymptotic expansion method used together with a �ame
transfer function model allows the assessment of how the unsteady combustion modi�es the
stability of the eigenmodes of the system. This strategy is tested on an academic case. The
method accurately assesses the eigen frequencies for low to medium values of the expansion
parameter � and seems to predict correctly the trend when �¿1. Further developments will
include the application to realistic gas-turbine con�gurations.
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